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The rise of a gas bubble in a viscous liquid 
By D. W. MOORE 

Department of Mathematics, University of Bristol 

(Received 21 November 1958) 

The rise of a gas bubble in a viscous liquid at  high Reynolds number is investi- 
gated, it being shown that in this case the irrotational solution for the flow past 
the bubble gives a uniform approximation to the velocity field. The drag force 
experienced by the bubble is calculated on this hypothesis and the drag coef- 
ficent is found to be 32/R, where R is the Reynolds number (based on diameter) 
of the bubbles rising motion. This result is shown to be in fair agreement with 
experiment. 

The theory is extended to non-spherical bubbles and the relation of the resulting 
theory, which enables both bubble shape and velocity of rise to be predicted, to 
experiment is discussed. 

Finally, an inviscid model of the spherical cap bubble involving separated flow 
is considered. 

2. Introduction 
A large number of investigations of the motion of gas bubbles in liquids have 

been published during the last Hty years." The experimental method adopted 
is, essentially, to release a volume of gas at  the bottom of a deep tank of liquid 
and then, when steady conditions have been attained, to determine the terminal 
velocity, the bubble shape and the bubble trajectory. The bubble volume V ,  and 
hence the other quantities involved, will depend on the hydrostatic pressure 
experienced by the bubble, so that measurements are carried out over a vertical 
range of distance sufficiently small for the change in hydrostatic pressure to  be 
much less than the pressure of the gas inside the bubble. 

For given gas and liquid, V or, more conveniently, the equivalent spherical 
radius re, defined by 

is the only quantity at the experimenter's disposal and i t  is thus the aim of the 
experiments to relate the bubble shape, trajectory and terminal velocity to re and 
to the properties of the gas and liquid. Thus an ancillary question facing the 
experimenter is to determine which properties of the gas and liquid enter into this 
relation. Now an obvious set of properties in terms of which one can attempt to 
interpret the experimental data consists of the densities of the gas and liquid, 
p' and p ;  the viscosities p' and p; the interfacial stress T and the acceleration due 
to gravity g. However, the number of properties to be considered can be reduced 

* The paper of Haberman & Morton (1953) gives a bibliography of the experimental 
literature. 

(1.1) gnr: = v, 
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if it is assumed that the motion of the enclosed gas has a negligible effect on the 
flow. Since the pressure and viscous stress forces exerted by the gas on the inter- 
face bear to the corresponding forces arising from the liquid motion the ratios 
p’/p and ,u’/,u, respectively, which are small for gas-liquid bubbles [0( and 
0 ( 1 0 - 2 )  for air-water] this assumption seems reasonable and will be adopted 
throughout this paper. 

The remaining physical parameters can be combined with each other to form 
the dimensionless ratio M ,  defined by 

M = qp4/pT3. (1 .2)  

M is thus a property of the liquid only, and variations in M are principally due to 
the factor ,u4, since p and T do not vary much from liquid to liquid. 

In  addition, one can form the dimensionless Reynolds number 

R = 2re uP/P, (1 .3 )  
and Weber number W = 2reU2p /T ,  (1 .4 )  

where U is the terminal velocity. Their dependence on U means that they are 
essentially unknowns, but they have the merit of possessing direct dynamical 
significance. In  particular, W measures the ratio of the hydrodynamic pressure 
forces to the surface tension forces which are maintaining the shape of the bubble. 
If the pressure forces are weak, so that W is small, the bubble shape is determined 
by the condition that the surface energy is a minimum, so that the bubble is 
spherical. Thus one can anticipate that increasing departures of the bubble shape 
from the spherical will be associated with increasing values of W .  

Having introduced the fundamental physical quantities which it is hoped will 
prove sufficient for the description of the flow, one is in a position to consider the 
experimental evidence. This will be taken from the experiments of Haberman & 
Morton (1953) .  These experiments were remarkable for the number of liquids 
used and the range of bubble sizes considered. 

The experimental data on the terminal velocity, the bubble shape and the 
bubble trajectory will now be described. The form of the results depend in each 
case on the value M has for the particular liquid. 

For low M liquids ( M  < 10-8) the terminal velocity a t  first increases rapidly as 
re increases, achieves a maximum and after falling to a minimum rises gradually 
again. For high M liquids ( M  > l O - 3 ) ,  the terminal velocity increases steadily 
with re, though the rate of increase falls off at a fairly well defined value of re. 

For low M liquids the shape is at first spherical, then increasingly oblate, then, 
at about the radius corresponding to the maximum velocity, the shape fluctuates 
rapidly about an oblate form until, for very large values of re, the bubbles attain 
a striking umbrella shape which is quite steady at its frontal surface though the 
rear of the bubble fluctuates. These ‘spherical cap ’ bubbles were the subject of an 
important investigation by Davies & Taylor (1950). For high M liquids the 
spherical cap shape is achieved without the bubble surface ever becoming 
unsteady. 

For low M liquids the bubble trajectory is at first rectilinear, then, a t  about the 
bubble radius for maximum terminal velocity, both planar zig-zag and spiral 
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trajectories are observed. Finally, the spherical cap bubbles rise in very nearly 
linear trajectories. For low M liquids only rectilinear trajectories are observed. 

From a dynamical point of view it is more illuminating to consider the drag 
coefficient CD rather than U ,  and to plot it against R and W rather than re. 

R 

FIGURE 1. The drag coefficient as a function of the Reynolds number (reproduced from 
Haberman t Morton 1953). 

1. Syrup (Bond), M = 0 . 9 2 ~  lo6. 
2. Olive oil (Arnold), M = 0.716 x 10-8. 
3. Water + 62 yo corn syrup, M = 0.155 x 
4. Water + 68 yo corn syrup, M = 0.212 x lo-*. 
5. Mineral oil, M = 1.45 x lo-*. 
6. Water + 56 glycerine (Bryn), M = 1-75 x lo-'. 
7. Water + 42 yo glycerine (Bryn), M = 4.18 x lo-*. 
8. Turpentine, M = 24.1 x 10Wo. 
9. Water+ 13 % ethyl alcohol (Bryn), M = 1.17 x 

10. Varsol, M = 4.3 x 10-lo. 
11. Cold water (filtered), M = 1.08 x 10-10. 
12. Methyl alcohol, M = 0.89 x 1O-IO. 
13. Water (filtered), M = 0.26 x 10-lo. 

C, is determined by the condition that for steady rise the buoyancy force 
experienced by the bubble must balance the hydrodynamic drag force; thus 

The results, reproduced from Haberman & Morton's paper are shown in figure 1 
and figure 2. The curves in the CD-R plane have a nearly universal form for 
large and small values of R, the drag coefficient having the value 2.6 for large R. 
The dependence on M is mainly in the range R = O(102). On the other hand, the 
curves in the C,- W plane vary greatly with M ,  but seem to be geometrically 
similar whilst having displacements parallel to the CD axis which depend on M .  

8-2 
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The variations are not completely systematic with respect to M ,  but there is 
a tendency for C, to increase as M increases, for given R or W.  The absence of 
completely systematic dependence on M suggests that too few physical para- 
meters have been used, but whether this points to internal circulation or to some 
other process is not known. 

." 
10-8 10-7 10-6 105  lo-* lo-' I 10 lo2 

v 
FIGURE 2. The drag coefficient as a function of the Weber number (reproduced from 
Haberman & Morton 1953). 

(a) Syrup (Bond), M = 0-92 x lo6. 
( 6 )  Water + 68 yo corn syrup, M = 0.212 x 
(c) Mineral oil, M = 1.45 x 
(d )  Water + 56 % glycerine (Bryn), M = 1.75 x 10-7. 
( e )  Water + 42 yo glycerine (Bryn), M = 4.18 x 10-8. 
(f) Methyl alcohol, M = 0.89 x 10-1O. 
( 9 )  Water + 13 yo ethyl alcohol, M = 1.17 x 
(h) Turpentine, M = 24-1 x 10-19 
(i) Varsol, M = 4.3 x 10-lO. 
(j) Water (filtered), M = 0-26 x 10-lo. 
( k )  Cold water, M = 1-08 x 10-10. 
(I) Water+ 62 yo corn syrup, M = 0.155 x 
(nz) Olive oil (Arnold), M = 0-716 x 

The most striking feature of the curves is the very sharp minimum displayed by 
the drag coefficient for the low M liquids which takes place in the Reynolds 
number range 200-400 and the Weber number range 2-3. It is this minimum 
which is responsible for the maximum in the U VS re curves for low M liquids. 

Thus for the low M liquids there seems to be a critical region in which the drag 
coefficient increases rapidly, the bubble surface ceases to be steady and the bubble 
trajectory ceases to be rectilinear. These effects have engaged the attention of 
several authors, but there has been disagreement as to their cause. 

Haberman & Morton suggest that the effects are due to the onset of eddy 
shedding, since this is observed for rigid spheres for comparable Reynolds 
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numbers. Whilst the resulting appearance of periodic pressures might explain the 
fluctuations in the surface and the non-rectilinear form of the trajectory, the 
marked increases in C, is not accounted for. More decisive evidence against their 
explanation is the fact that, according to Hartunian & Sears (1957), no wake 
exists for pure, low M liquids. Hartunian & Sears believe that instability of the 
bubble wall, rather than the onset of hydrodynamic instabilities in the external 
flow, is responsible for the effects. They point out in support of their view that the 
explanation in terms of hydrodynamic instability requires the effects to start in 
all fluids a t  the same critical Reynolds number, whilst their explanation implies a 
critical Weber number. An examination of the data points to the existence of a 
critical Weber number for the pure, low M liquids. They go on to consider the 
problem theoretically, assuming irrotational flow about a spherical bubble, and 
obtain a critical Weber number in good agreement with experiment. Hartunian & 
Sears’s observations and the success of their calculations suggest that the irrota- 
tional solution is, at high Reynolds numbers, a good approximation to the actual 
viscous flow around a gas bubble. 

This approximation is examined briefly in $ 2  of the present paper and it is 
shown to be dynamically reasonable. It is suggested that the irrotational solution 
forms a spatially uniformly valid approximation to the actual velocity field as 
the Reynolds number tends to infinity, although the stress field is not everywhere 
approximated by the irrotational solution. However, it  is shown that, despite 
this restriction, the drag force on the bubble, which arises from the normal viscous 
stresses, can none the less be calculated and the result 

CD = 32/R (1.6) 
is obtained and shown to be in fair agreement with experiment. 

$ 3  is devoted to the non-spherical bubble. It is shown that the shape of the 
bubble is determined, a t  high Reynolds numbers, by the pressure forces. How- 
ever, even with this simplification, the determination of the bubble shape is 
difficult so that, following previous authors, it  is assumed that the bubble is 
oblate ellipsoidal. The drag on the bubble is again calculated from the irrotational 
flow and there results an expression for C, as a function of W and M .  In  parti- 
cular, the theory predicts that C, M-* should be a function of W only. These 
results are compared with experiment and the agreement is shown to be fair. The 
theoretical drag curve has a minimum a t  W = 2.2 and it is suggested that this 
accounts for the observed minimum (though not for the subsequent sharp rise) 
in the experimental drag coefficient curve. 

Finally, in $ 4 some tentative ideas on the flow around the very large spherical 
cap bubbles are put forward. The possibility that an inviscid model of the flow 
involving separation might account for the properties of the bubble is investigated. 

2. The drag coefficient for a spherical bubble 
I n  attempting to calculate the drag force experienced by a gas bubble one is a t  

once faced with the difficulty that the bubble shape is unknown. Now it has been 
observed that very small air bubbles in liquids (re < 0.5mm in water) are 
spherical and, whilst these small bubbles rise relatively slowly, the Reynolds 
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numbers associated with the rising motion can still be large. Thus in this section 
the bubble will be regarded as spherical* and to emphasize this restriction the 
radius will be denoted by a rather than re. 

Let the bubble be rising with constant velocity U in an unbounded viscous 
liquid at rest at infinity. Then if r is the position vector and u the fluid velocity 
relative to the centre of the sphere, the Navier-Stokes equations and boundary 
conditions are (u.V)u = g--l/pVp+vV2u, 

v . u  = 0, (2 .2 )  
u - t U  as Irl-+m, (2 .3 )  

u . n = O  on Irl = a  (2.4) 

and pns = O on Irl = a ,  (2.5) 

where n’is the unit outward normal at the surface of the sphere and 0 is the angle 
between r and the upstream axis of symmetry. 

The irrotational solution of (2.2), (2.3) and (2.4) is given by 

and the corresponding pressure pz is determined from (2.1) which is equivalent to 
Bernouilli’s equation in this case, since the velocity field is irrotational. pz is not 
constant on the surface of the bubble, but in view of the predominance of surface 
tension forces in the case of the spherical bubble this boundary condition can be 
ignored. The tangential stress pne can be calculated from (2 .6)  and one finds that 

(2.7) pns = - 3(pUU/a) sin 0. 
Equation (2 .7 )  shows that (2 .6 )  does not satisfy the boundary condition (2.5) and 
so cannot be the solution of the problem. However, one can modify the problem 
by replacing (2.5) by the boundary condition 

prig = -3(,uU/a)sinB on Irl = a;  (2.8) 
that is to say one introduces a fictitious tangential stress? distribution at the 
bubble surface. Then (2 .6 )  is the exact solution of the modified problem. Further- 
more, (2.8) shows that the ratio of these fictitious stresses to the inertia and 
pressure forces tends to zero as ,u -+ 0 for fixed a and U. Thus it is plausible to 
assume that when the Reynolds number R is large, the irrotational solytion 
provides a uniformly valid approximation to the inertia forces and hence to the 
velocity field. Clearly, the velocity gradient or stress field will not be everywhere 
derivable from (2 .6) ,  since the small fictitious stresses are never zero and there 
will thus be a region adjoining the bubble surface in which the relative error in the 
stress field is O(1). However, this does not contradict the assertion that the 
inertia forces are uniformly approximated by those of the irrotational solution, 
since normal gradients occur in the inertia terms multiplied by the normal 
velocity component and this vanishes a t  the bubble surface. The author has shown 

The device of invoking fictitious external forces to render an approximate solution 
* This is equivalent to assuming that the Weber number is very small. 

exact was suggested by Lamb’s (1932, p. 609) discussion of the Stoke’s approximation. 
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elsewhere (Moore 1958) that this region has the character of a boundary layer in 
which tangential stress, though not the tangential velocity, has an O( 1) difference 
from the values predicted by (2.6). 

It must be pointed out that R cannot be made large without limit since, as was 
noted in $ 1 ,  there exists for each liquid a critical Reynolds number at which a 
change in nature of the flow takes place. However, this critical Reynolds number 
is itself large ( > 200), so that there exists a range of subcritical Reynolds numbers 
in which it is reasonable to apply the approximation just described. 

The equation of continuity for axial flow is, in spherical polar co-ordinates, 

where u and w are the components of the velocity along and perpendicular to the 
radius vector. Now the considerations of the preceding paragraphs suggest that 
the irrotational solution (2.6) furnishes, at large Reynolds numbers, a uniform 
approximation to the velocity field (u, v) so that v(r, 8) and av/a0 are derivable 
from the irrotational solution. Equation (2.9) thus shows that the normal rate of 
change of the normal velocity component is also uniformly approximated by the 
irrotational solution, despite the fact that avlar is not approximated by the 
irrotational solution. It is this property of the approximation which enables the 
drag force experienced by the bubble to be calculated. 

The tangential stress at the bubble surface is zero and, accordingly, the drag 
force arises entirely from the normal viscous stresses. Now, in spherical polar 
co-ordinates, au 

PrT= - P + % p  (2.10) 

wherep is the pressure. Thus, using the irrotational solution (2.6), one finds that 

pW = - p I  - 6(pU/a) cos 0. (2.11) 

D = 8npUa, (2.12) 

The drag force D is now easily calculated and one finds that 

so that the drag coefficient for a spherical bubble is given by 
CD= 32/R. (2.13) 

This is the main result of the present paper. It is subject to the restrictions that 
R is to be large (but subcritical) and that W has to be small. That these two condi- 
tions are not mutually exclusive follows from the observed occurrence of spherical 
bubbles at large Reynolds numbers. A relation between R and W is derived in the 
next section and this also predicts that both conditions can be satisfied in low 
M liquids. 

A comparison of (2.13) with some experimental measurements of drag co- 
efficients is shown in figure 3. Points were selected from the curves given by 
Haberman & Morton for spherical bubbles in varsol and 13 % ethyl-alcohol+ 
water mixture. Evidently (2.13) is in fair agreement with experiment, although 
the theoretical drag coefficient seems to be somewhat too small.* 

* Dr Saffman suggested to the author that this might be due to a small amount of form 
drag caused by separation of the boundary layer. 
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If, as is suggested in this paper, the irrotational solution furnishes, at high 
Reynolds numbers, a uniformly valid approximation to the velocity field, it is 
clear that the wake behind the bubble must be of a rather weak character, in the 
sense that the velocities in the wake region differ only slightly from those of the 
irrotational solution. This does not mean that the wake is of no dynamical 
importance-indeed the momentum loss due to the velocity defect in the wake 
must be equal to the rate of working of the drag force acting on the bubble and, 

10-1, 

R 10 

FIGURE 3. The theoretical drag coefficient for spherical bubbles compared with repre- 
sentative points from Haberman & Morton’s (1953) experimental curves. +- , 13 yo ethyl 
alcohol + water; 0, varsol. 

also, the wake region makes a significant contribution to the total viscous dissipa- 
tion-but it does imply that the wake is not likely to be easily observable. 
Hartunian & Sears’s observations, referred to in $1, suggest that there is no wake 
behind gas bubbles in pure, low M liquids although wakes of an uqisual, ap- 
parently closed form are observed behind bubbles in impure liquids, 

3. The non-spherical bubble 
The photographs given by Haberman & Morton show that the rectilinearly 

rising bubble can achieve quite considerable departures from the spherical. 
Hartunian & Sears (1957) estimated, from this photographic data, that the bubble 
diameter perpendicular to the trajectory could be as great as twice the diameter 
parallel to the trajectory. Thus the question arises of whether or not the above 
calculation can be extended to cover the non-spherical bubble or, in other words, 
whether or not the restriction W 4 1 can be removed. The problem of deter- 
mining the drag coefficient is now considerably complicated by the fact that the 
bubble shape is also unknown and has to be determined as part of the calculation. 
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Corresponding to this extra unknown is the additional boundary condition, to be 
satisfied at every point of the bubble surface, 

p,, = T -+- +const., G1 a 
where Rl and Rz are the principal curvatures. This condition expresses the con- 
stancy of the internal gas pressure. Both viscous forces and pressure forces con- 
tribute top,,, but since the viscous stress is smaller by a factor of order 1/R than 
the pressure its contribution can be neglected and the shape of the bubble 
calculated as if the flow were inviscitk However, the dependence of the pressure 
forces on the irrotational flow and hence on the bubble shape is non-linear so that 
the problem of determining the bubble shape is difficult. 

It is natural to start by considering the case of the nearly spherical bubble and 
this case was treated by Hartunian & Sears (1957). The bubble shape will be 
taken to be the ellipsoid of revolution 

r = a[1 +eP,(cosO)] ( E  < 1). (3.2) 

Then, calculating the pressure forces from the irrotational flow above a sphere, 
one has ~pU2sin20+O(epU2) = 4T(~/a)P,(cosO) +O(Ts2/a), (3.3) 

where the approximate formula for the total curvature given by Lamb (1932, 
p. 474) has been used. Thus, one must have 

(3.4) E = --3- 1 I3 ( U2ap/T). 
To the order of this approximation it does not matter whether the Weber number 
is based on a or the equivalent spherical radius re, so that introducing the ratio x 
of the transverse and longitudinal axes of the bubble, one has 

Thus the bubble is oblate. 
Some discussion of the neglected terms in (3.3) is of interest. The term O(spU2) 

arises from the effect of the change of shape on the pressdre field, whilst the term 
0(e2T/a) arises from the use of the approximate formula for the total curvature. 
Equation (3.4) shows that these terms are in fact of the same order of magnitude. 
The calculation of the deformation due to Hartunian & Sears seems to be in error 
at this point, since they attempt to improve the linear theory by retaining only 
the term arising from the perturbation to the pressure field. 

The result (3.5) shows that deformations from the spherical are not important 
if W < and one can regard this as providing an estimate of the range of validity 
of the expression for C, given in 5 2. 

One might attempt to improve the linear theory by assuming a more general 
shape in place of (3.2) and retaining terms of higher order in the departures from 
the spherical, but, in addition to the fact that such a calculation would be very 
lengthy, it seems unlikely that one could get a valid result for large deformations 
without using an inordinately large number of terms. One can instead, following 
Hartunian & Sears, assume that the bubble is oblate ellipsoidal for all values of 
the axis ratio. One cannot then satisfy the boundary condition (3.1) at all points 

x =  l + & W .  (3.5) 
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of the bubble surface and, indeed, it seems clear that the bubble is exactly oblate 
ellipsoidal only for vanishingly small values of x- 1. One can, however, insist 
that (3.1) be satisfied a t  the points of the bubble surface where the total curvature 
is a maximum and minimum, that is to say at the nose and at the equator. 
A similar assumption about the shape was made by Saffman (1956), but the 
approximate method of satisfying the surface pressure condition employed there 
was different. 

2.0 2:5 x 1.0 

FIGURE 4. The function W ( x )  defined in equation (3.6). 

Now the potential flow about an oblate ellipsoid of revolution is described by 
Lamb (1932, p. 142) and thus the pressure force at  the surface of the bubble can 
be calculated. The condition that (3.1) is to be satisfied at the points of maximum 
and minimum curvature determines W as a function of x and one finds, after some 
algebm, that 

(3.6) 
A similar result was obtained by Hartunian & Sears. The functiw W(x) is plotted 
in figure 4 and it is seen that the linear theory is a good approximation for only a 
very limited range of values of - 1. 

When the bubble shape has been determined, it remains to calculate the drag 
force experienced by a bubble of this shape. The structure of the flow about the 
spherical bubble was such that the normal viscous stresses could be calculated 
from the potential flow about the sphere andit seemsreasonable toexpect that this 
would be the case for bubbles of a more general shape. Thus if the potential flow 
about the bubble is known the drag force can be calculated without difficulty and, 
again invoking the details of the potential flow about an oblate ellipsoid of revolu- 
tion, one has, after a lengthy calculation, 

W ( x )  = 4 x 3 ~ 3  + x - 2) [ x 2  sec-1 x - ( x 2  - 1)4]2 ( 2 2  - 1)-3. 

where 

(3.7) 

(3.8) 
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The graph of F(x) is shown in figure 5 and it can be seen that the drag coefficient 
increases with increasing oblateness. 

Now once C, is known, the terminal velocity U is known, by virtue of the 
relation (1.5) expressing the balance of the buoyancy force and the drag force. 
Thus, under the assumption of oblate ellipsoidal shape, (3.6), (3.7) and (3.8) 
provide, since they are equivalent to two equations in the two unknowns U and x, 
the complete solution of the problem of determining the terminal velocity and 
degree of oblateness of a bubble rising steadily at high Reynolds number. How- 
ever, the exact relations between the unknowns and re cannot be found explicitly, 
owing to the complicated way in which x enters the equations and in order to 

FIGURE 5. The function P(x)  defined in equation (3.8). 

illustrate the nature of the results, a linear theory, arising from the expansion of 
R and Win powers of x - 1, will first be given. This linear theory has the additional 
advantage that it makes no assumption as io  the bubble shape for, as has been 
seen, it follows rigorously from the analysis that, provided that terms of O(x - 1)2 
are ignored, the bubble is an oblate ellipsoid of revolution. 

The function F(x) can be expanded in powers of x - 1 and one finds that 

P = l++$(x-l)+ .... (3.9) 
Now equation (1.5) yields the relation 

7.7 = 4&?7/P) (V1, (3.10) 

whereas the Reynolds number R is, by definition, 

R = 2repU/p. (3.11) 

These equations enable re and U to be determined as functions of R and of the 
constants of the liquid, so that the Weber number can be calculated as a function 
of R; thus, W = (38118) Pa R8Mg. (3.12) 
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One can now eliminate W between this equation and (3.5) and on substituting 
into (3.9) one has 

CD = 32/R(1+ (381240) RtMj + . . .}, (3.13) 

since the variation of P in (3.10) contributes only second-order terms. This 
expression for CD predicts that, for the lower values of R, the drag coefficient has 
the universal value 32/R in all liquids but that as R increases, the different 
liquids display increasing departures from this universal form. Furthermore, 
for given R, C, is an increasing function of M .  Both these features are present in 
the curves in the CD-R plane given by Haberman % Morton, although the 
variations with respect to Mare not completely systematic. One can also express 
CD as a function of W and, to the order of the approximation, one has 

CD = (6/18f)M%W-g+ .... (3.14) 

If the relation between C, and W were displayed on log-log graph paper (3.14) 
would predict that the drag coefficient curves were parallel straight lines of slope 
- 2. This is seen to be approximately the case from figure 2. 

As was stressed in the introduction, the presentation of results about bubble 
motion should, from the point of view of dynamical interpretation, be in terms of 
the dimensionless numbers C,, R, W and M ,  rather than in terms of the directly 
measured quantities re and U .  However, the results of this section can readily be 
converted to this direct form if required. One result, in direct form, of the linear 
theory, is an expression for the departures from the spherical in terms of the 
equivalent radius. This is x = 1 +&&(p3g2/Tp2), (3.15) 

so that the axis ratio depends very strongly on the ratio of re to the characteristic 
length T ~ p ~ g - ~ p - % .  For water this length is about 0.2 mm and this provides an 
idea of the size of bubble a t  which departures from the spherical will, on the above 
theory, become apparent. 

Returning to the non-linear theory one can, formally, go through the procedure 
which leads to (3.14) and one finds that, without approximation, 

C, = (96/188) M*W-%[P{x( W)}]%. (3.16) 

Thus the non-linear theory predicts that CD/M* should be a function of W only. 
However, before comparing this ratio with its experimental values, one must 
express the condition that R is large in terms appropriate to the CD-W plane. 
In fact (3.L2) shows that 

R = W+( 18%/3) Fi2M-i (3.17) 

and, since W can be of O( l ) ,  one must require that 

M-%% 1. (3.18) 

More precisely, if a Reynolds number of 50 is regarded as the lower bound of the 
range of validity of the theory, then 

M < 10-7, (3.19) 

so that the theory is restricted to low M liquids. 
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The function CD/M* as given by (3.16) is plotted in figure 6 together with values 
of CDIM* for several low M liquids. These were taken from the experimental 
curves of Haberman & Morton. It is seen that the agreement is fair for several 
of the low M liquids for W < 3, although the predicted values are on the whole 
too low. An unexpected feature of the theoretical drag curve is the minimum at 
W + 2.2. It seems usually to have been assumed that the drag coefficient would 
be a monotonic decreasing function of W ,  so that the sharp minimum displayed 
by the experimental curves has been associated with the onset of an instability of 

t 

1 .o 2 0  3.0 4.0 
W 

FIGURE 6. The theoretical relation between Co and W compared with experimental values 
(taken from Haberman & Morton’s curves) for several low M liquids. 0, Varsol; +, 
turpentine; ++, methyl alcohol; W ,  water. 

the flow. The present work suggests, however, that the minimum is a property of 
the steady flow. This view is, to some extent, confirmed by a comparison of 
Hartunian & Sears’s measurements with those of Haberman &Morton. Hartunian 
& Sears estimated the critical Weber number for the onset of instability by 
+observing a large number of bubbles in the critical region and noting the size of 
bubble which was just large enough to oscillate. This gave a critical Weber 
number of 3, in good agreement with their calculations. However, it  can be seen 
from figure 2 that the minimum in the experimental drag curves of Haberman & 
Morton are at about W = 2. 

It must be emphasized that the theoretical drag curve ceases to be ineven 
order of magnitude agreement with experiment for values of W much greater 
than 3. For example, at W = 3.75, C,/M+ is about 28, whilst the experimental 
values are of O(lO0). Evidently, some other mechanism is responsible for the 
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sharp increase of the drag, possibly an instability of the type investigated by 
Hartunian & Sears. In  any case, the approximation of regarding the bubble as 
oblate ellipsoidal is not likely to be reliable for values of x much greater than 2.2, 
which corresponds to a Weber number of 3.  

The relation (3.17) between R and W is shown graphically in figure 7, so that 
the CD us R curve can be constructed if required. Since 

(3.20) 

it is clear that there will be a minimum in this curve a t  the value of R given by 

Rmin = 3.3M-i. (3.21) 

lo-’ 
10 

l W  
lo-’ 

FIUURE 7. The theoretical relation between R and W as predicted by equation (3.17). 

The minimum value depends on M ,  however, and so is different for the different 
liquids, as is observed experimentally. A comparison with experimental data 
is shown in table 1, the minima being roughly estimated from Haberman & 
Morton’s gurves. 

It is clear from figure 6 that the drag coefficients for bubbles in water are con- 
siderably above the predicted values. That the behaviour of bubbles in water is, 
t o  some extent, different from that in other low M liquids, was noticed by 
Hartunian & Sears. They found that critically stable bubbles in water had an 
oblateness of about 1-5, whilst in most other liquids the value was 2.1. It is well 
known that it is extremely difficult to purify water, so that it is natural to seek an 
explanation of this discrepancy in terms of impurities. Haberman & Morton 
conducted tests in which surface active substances were added to the water used 
in bubble experiments and found that as little as + % of the substance caused the 
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drag coefficient to rise to the value for a rigid sphere. They suggest that the mole- 
cules of the surface active substance collect at the surface of the bubble which 
thus behaves as a rigid body as far as the hydrodynamic boundary conditions are 
concerned. This idea is supported by Hartunian &Sears’s observationof a critical 
Reynolds number in ‘dirty’ liquids and the fact that such bubbles can possess 
a wake. With these observations in mind, it is not unreasonable to suggest that 

Liquid 
Water + 42 yo glycerine 
Water + 13 yo ethyl alcohol 
Turpentine 
Varsol 
Cold water (atered) 
Methyl alcohol 
Water (atered) 

Observed 

loo* 
200 
170 
230 
300 
300 
450 

R,, 

* Existence of minimum not certain. 

TABLE 1 

Calculated 

95 
130 
175 
245 
325 
335 
430 

R* 

the water used in Haberman & Morton’s experiments contained small concentra- 
tions of impurities which were sufficient to raise the drag coefficient towards the 
rigid sphere value. It is significant that the use, by Hartunian & Sears, of double 
distilled water, reduced the discrepancy in the critical oblateness by about 50 yo. 

4. The spherical cap bubble 
The observations of Davies & Taylor (1950) showed that very large air bubbles 

in nitrobenzene assumed a remarkable umbrella-like form. The curved surface 
was uppermost and was steady and almost exactly spherical. The rear surface was 
unsteady and fluctuated about the plane passing through the rim of the curved 
upper surface. These ‘spherical cap’ bubbles have been observed in other low 
M liquids and in high M liquids also, though in this case the rear surface was 
steady and nearly plane. The transition to this shape is not sudden, but seems to 
occur gradually as values of the Weber number of the order of twenty are 
approached. 

Let the bubble be regarded as being at rest in a uniform stream of velocity U. 
The flow will be regarded as inviscid. Let R denote the radius of the spherical 
surface and let 0 be the angle between any radius of this surface and the axis of 
symmetry. Then if U(6)  is the velocity at any point of the spherical surface, one 
must have, since the interior pressure is constant 

ipU2(0) +pgR cos 0 = pgR (4.1) 

(in view of the large values of the Weber number characterizing this type of 
bubble, surface tension is ignored). If, following Davies & Taylor, one assumes 
that the flow near the curved surface of the bubble is identical with the potential 
flow about a complete sphere of the same radius, then 

U(0)  = ;Usin@. (4.2) 
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Thus, on substituting into (4.1), one finds that 

;pU2 sin2 6 + pgR cos 8 = const. (4.3) 

Clearly, this equation cannot be satisfied exactly for any choice of U ,  but Davies & 
Taylor point out that it is satisfied as far as the terms in 82 in the power series 
expansions of the trigonometric functions, so that the pressure condition is 
satisfied near the nose of the bubble if 

U = g(gR)fr. (4.4) 
Davies & Taylor showed that (4.4) was in good agreement with the experimental 
relation between U and R. Rosenberg (1950) has verified that Ua(gR)*, but 
suggests that the coefficient should be slightly reduced to the value 0.645. Thus 
we may regard this relation as having been firmly established. 

No further progress can be made without making some assumption as to the 
nature of the flow a t  the rear of the bubble. In  particular, the shape of the bubble 
is unknown, so that even though the terminal velocity is given by (4.4), the drag 
coefficient cannot be determined. 

The approximation of regarding the flow as inviscid, which is, in view of the 
discussion in 3 2, likely to be reliable at the front of the bubble, may well break down 
at the rear where the relatively large value of the drag coefficient suggests that 
flow separation of some sort must take place. However, one might hope to 
account for the drag coefficient on the basis of a potential solution involving 
separation of the flow along a surface of discontinuity and it is the object of this 
section to examine this solution. The bubble will be regarded as being exactly of 
the spherical cap form, so that the problem of finding the bubble shape reduces 
to  determining the angle 8, of the cap. It will be assumed that the flow separates 
from the bubble at the join of the curved and plane surfaces and that the flow 
downstream consists of an infinite axi-symmetric wake of stagnant fluid, 
separated from the rest of the flow by a surface of discontinuity. This surface is 
dearly one of constant dynamic pressure and so of constant velocity. Thus the 
problem is mathematically equivalent to that of determining the shape of the 
axi-symmetric cavity behind a solid obstacle of the same shape as the bubble. 
Unfortunately, no method of solution, analogous to the well-known hodograph 
plane method in the two-dimensional case, is available. However, it  will prove 
possible to determine 6, without finding the exact shape of the cavity. 

Let P be the velocity of the fluid just a t  the surface of discontinuity. Then since 
the velocity of the fluid must be continuous at the points where this surface leaves 
the bubble, one must have 

Equation (4.5) also ensures that the pressure is continuous a t  the plane surface of 
the bubble. Now, since the wake is assumed to extend to infinity, the velocity at 
wake boundary must be equal to the uniform velocity of the fluid at downstream 
infinity which is, by continuity, equal to the velocity of the fluid at upstream 
infinity. Thus, from (44, 

If one assumes that U is related to the radius R of the cap by (4.4), substitution 
into (4.1) shows that 

7 = U(6,). (4.5) 

u = up,). (4.6) 

(4.7) em = Cos-ip = 390. 
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Thus, even though no details of the wake flow have keen elucidated, 6, has been 
determined. However, the value is somewhat outside the range observed by 
Davies & Taylor, the mean value of 8, being about 52'. 

The volume V of the bubble is given in terms of R and 0, by the relation 

V = rR3(Q C O S ~  0, - cos 6, + 5) (4.8) 

so that the buoyancy force pgV is known. Then, since U is given in terms of R by 
(4.4), the drag coefficient (as defined in 8 1 ;  Davies & Taylor employ a different 
definition) can be found and one has 

The experimental value is 2.6. 
One can determine the asymptotic form of the wake using a result due to 

Levinson (1946).  Levinson proved that the asymptotic relation between the 
radius r and the distance downstream x: for the infinite axi-symmetric constant 
pressure cavity behind an obstacle is 

r - cx(logs)-* as (z+co), (4.10) 

where c is a constant, and that, moreover, the drag force D experienced by the 
obstacle responsible for the cavity is given by 

D = +(npU2c2),  (4.11) 

where U is the velocity of the uniform stream. Thus equating this expression for 
the drag to the buoyancy force pgV and invoking (4.4) one has 

c + 0-85R.  (4.12) 

It is not surprising that the value of the drag coefficient predicted by this 
theory is somewhat too small, since the actual flow is almost certainly turbulent. 
Indeed, owing to an optical anisotropy of nitrobenzene, Davies & Taylor were 
able to observe the turbulence behind spherical cap bubbles and were even able 
to estimate the turbulent dissipation, which turned out to be of the same order 
of magnitude as the rate of working of the drag force. The actual wake was 
approximately spherical, the surface being quite well defined in the photograph 
given by Davies & Taylor. This suggests that perhaps a more realistic model would 
be one of the closed streamline type discussed by Batchelor (1956),  although this 
type of wake would lead to a zero value of the drag coefficient. 

What is most likely is that no satisfactory explanation of the properties of the 
bubble can be obtained on inviscid theory, whatever assumptions are made. 
However, in lieu of any more realistic theoretical approach, investigations of this 
type are perhaps worth making. In  particular, a more general approach to the 
inviscid, discontinuous flow, which regarded the bubble shape also as being 
an unknown, would perhaps throw some light on why the bubbles adopt the 
curious spherical cap shape. However, the resulting boundary value problem 
is formidable. 

c, = 2.1. (4.9) 

The author has benefited from some interesting discussions with Dr P. G .  
Saffman, who drew his attention to the problems of bubble motion at high 
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Reynolds numbers. Dr Saffman also made some helpful comments on the first 
draft of this paper. During the period of preparation of this paper the author 
was in receipt of a maintenance allowance from the Department of Scientific and 
Industrial Research. The author is indebted to the Director of the David W. 
Taylor Model Basin for permission to reproduce figures 16 and 17 from Haberman 
& Morton (1953). 
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